97 research outputs found

    Quantum-trajectory analysis for charge transfer in solid materials induced by strong laser fields

    Full text link
    We investigate the dependence of charge transfer on the intensity of driving laser field when SiO2 crystal is irradiated by an 800 nm laser. It is surprising that the direction of charge transfer undergoes a sudden reversal when the driving laser intensity exceeds critical values with different carrier envelope phases. By applying quantum-trajectory analysis, we find that the Bloch oscillation plays an important role in charge transfer in solid. Also, we study the interaction of strong laser with gallium nitride (GaN) that is widely used in optoelectronics. A pump-probe scheme is applied to control the quantum trajectories of the electrons in the conduction band. The signal of charge transfer is controlled successfully by means of theoretically proposed approach

    Time- or Space-Dependent Coefficient Recovery in Parabolic Partial Differential Equation for Sensor Array in the Biological Computing

    Get PDF
    This study presents numerical schemes for solving a parabolic partial differential equation with a time- or space-dependent coefficient subject to an extra measurement. Through the extra measurement, the inverse problem is transformed into an equivalent nonlinear equation which is much simpler to handle. By the variational iteration method, we obtain the exact solution and the unknown coefficients. The results of numerical experiments and stable experiments imply that the variational iteration method is very suitable to solve these inverse problems

    Nonnegative polynomial optimization over unit spheres and convex programming relaxations

    Get PDF
    We consider approximation algorithms for nonnegative polynomial optimization over unit spheres. Such optimization models have wide applications, e.g., in signal and image processing, high order statistics, and computer vision. Since polynomial functions are nonconvex, the problems under consideration are all NP-hard. In this paper, based on convex polynomial optimization relaxations, we propose polynomial-time approximation algorithms with new approximation bounds. Numerical results are reported to show the effectiveness of the proposed approximation algorithms

    Voltage Stability and Transient Symmetrical Fault Current Control of Voltage-Controlled MMCs

    Get PDF

    PLL synchronization stability analysis of MMC-connected wind farms under high-impedance AC Faults

    Get PDF
    • …
    corecore